

Technology Transfer Seminar

"Traffic Calming -

A Comprehensive Approach"

March 14, 2003

Gary Hamrick, Principal Meyer, Mohaddes Associates, Inc.

Tel. 562.432.8484

Ghamrick@mmausa.com

Seminar Agenda

- Introduction
- Traffic Calming A Comprehensive Approach
- Legal Issues and Traffic Calming
- Local Experience
 - Case study: Canary Drive Stages I and II Traffic Calming
 - San Jose's Smart Streets Education & Awareness Program

Traffic Calming – A Comprehensive Approach

- Introduction
 - Definition, Objectives, and Challenges
 - Authority to "Calm Streets"
 - State of the Practice
 - Levels of Traffic Calming
 - A Comprehensive Approach
- Traffic Calming Tools
- Advantages and Disadvantages
 - Summary
 - Volume, Speed, and Safety Impacts
 - Emergency Response
- Processes and Programs

Introduction

What is "Traffic Calming"?

- Numerous Definitions
- Different in Each Community

... a way to Address:

"too many cars, going too fast, past my house"

Objectives of Traffic Calming

- Reduce Speeds
- Reduce Cut-Through traffic
- Increase Safety:
 - Pedestrians
 - Bicycles
 - Vehicles
- Improve Quality of Life
- Do not "shift" the problem

Challenges

- Perception of the problem
 - Who is "cutting-through"?
 - What speed is too high?
- US vs. THEM
- Shifting the problem
- Emergency Vehicle Access/Response
- Costs/Resources
- Potential for Proliferation
- Legal Issues

Authority to "Calm Streets"

Traffic Calming Tools —— Design Features

Authority to "Calm Streets"

MUTCD

- Governs traffic control devices
- Does not prohibit traffic calming features
- No standards for "calming"
- Adopted speed hump markings
- Adopted speed hump sign
- Adopted circular intersection sign

State of the Practice

- Institute of Transportation Engineers
 - Traffic Calming State of the Practice (August 1999)
 - Guidelines for the Design and Application of Speed Humps (June 1997)
 - Traditional Neighborhood Development Street Design Guidelines (October 1999)
- Many States
- Many California Communities
 - Streets and Sidewalks, People and Cars: The Citizen's Guide to Traffic Calming

A Comprehensive Approach

- Engineering
- Enforcement
- Education
- Public Involvement

Traffic Calming Tools

Level 1 —— Level 3

- Less Impacting
- Less Restrictive
- Lower Cost

- More Secondary Impacts
- More Restrictive
- Higher Cost

Level One

- Least restrictive tools
- Easiest to implement
- Less potential to shift problem
- Less effect on emergency
- Lower cost
- Faster to implement
- Lower controversy
- Examples: enhanced enforcement, speed monitoring trailer, neighborhood traffic watch

Level Two

- Moderately restrictive tools
- Greater effect on emergency response
- Greater potential to shift problems
- Higher cost
- More complex approval process
- Examples: crosswalk warning system, chokers, turn restrictions via signage

Level Three

- Most restrictive tools
- Strong potential to affect emergency response
- Strong potential to shift problems
- Generally the highest cost
- Should be considered only after Level One and Two tools have been reviewed and/or tested in the field
- Examples: speed humps, traffic circles, street closures

Level One

Enhanced Police Enforcement

Advantages:

- Effective while officer is present and monitoring speeds
- Can be implemented in almost any location at short notice

Disadvantages:

- Not self enforcing; temporary measure
- Fines may not cover cost of enforcement
- Short "memory effect" when enforcement officer no longer present

Special Considerations:

- Often helpful in school zones
- May be used during "learning period" when new devices or restrictions first implemented

Cost:

High cost primarily due to the staffing requirements

Where to Apply:

All residential streets where speeding is a concern

Speed Monitoring Trailer

Description:

 Mobile trailer mounted radar display that informs drivers of their speed. Also collects speed data.

Advantages:

- Effective speed control while in use
- Educates drivers on speeds

- Duration of effectiveness limited some residual effects noted
- Not self enforcing in long run

Cost:

 Low to moderate cost due purchase price and to staffing requirements

Where to Apply:

Any local/residential street where speeding is a problem

Neighborhood Traffic Watch

Description:

 Residents volunteer to observe violations and are trained to use radar units to record and report habitual speeds. Courtesy letters may be sent by police

Advantages:

- Involves affected residents. Effective educational tool
- May have longer term effects as neighbors become aware of who is speeding and the concerns of others neighbors

Disadvantages:

- Requires extensive volunteer citizen involvement
- May need to consider legal issues

Cost:

Low to Moderate

Where to Apply:

Residential streets with speeding concerns and willing, active neighbors

Speed Photo Enforcement Unit

Description:

 Similar to radar speed trailer, except the unit actually takes photos of speeders, and tickets are issued via mail. Unit is mobile and is moved from location to location

Advantages:

Very effective for speed reduction while in use

Disadvantages:

- Cost of unit is very high
- Perceived "Big Brother" element may create controversy over use
- Not currently allowed in California

Cost:

High

Where to Apply:

Any street where speeding is a concern

Higher Visibility Crosswalk

Description:

 Higher visibility cross walk design using either special signing and striping or special paving treatment

Advantages:

More visible to drivers than traditional crosswalks, greater awareness

Disadvantages:

- Pedestrians may place too high a level of reliance on the ability of the crosswalk to control drive behavior
- Higher maintenance than standard crosswalk

Cost:

Low

Where to Apply:

• Use at uncontrolled crosswalks as determined appropriate by City Traffic Engineer

Pedestrian Crossing Signs

Description:

 Signs placed in the roadway median at marked crosswalks that advise motorists of the pedestrian right-of-way

Advantages:

- Brings motorists attention to crosswalk and pedestrian activity
- May result in slower speed at the crosswalks

Disadvantages:

- Driver confusion
- Proliferation of such signs would tend to diminish effectiveness

Cost:

Low

Where to Apply:

- Selected crosswalk locations with high levels of pedestrian activity.
- May be applied in combination with other special crosswalk treatments such as special pavement or raised crosswalk

Level Two

Crosswalk Warning System

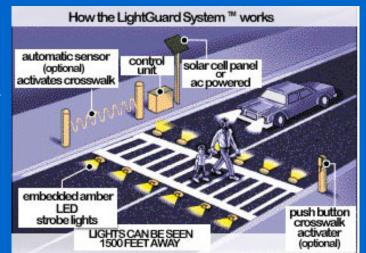
Description:

 Lights embedded in the pavement at a pedestrian crossing which flash to alert oncoming motorists when a pedestrian is crossing

Advantages:

- Much higher visibility to drivers than standard crosswalk
- Visible at night and during haze and fog conditions
- Provides additional visibility for slower pedestrians

Special Considerations:


- 200 installed nation wide, but still a "new" measure
- Higher maintenance than standard crosswalks

Cost:

High – up to \$20,000 per application

Where to Apply:

Limited to special locations to be determined by City Traffic Engineer

Entry Island (Neighborhood Identification Island)

Description:

 A raised island in the center of a two-way street that identifies the entrance to a neighborhood

Advantages:

- Notifies motorist of change in roadway character
- Helps slow traffic
- Opportunity for landscaping and/or neighborhood entry signage for aesthetic improvements
- May discourage some cut-through traffic

Disadvantages:

- Need for maintenance (and irrigation)
- May necessitate removal of parking
- Limited effectiveness on speed or volume control

Cost:

Medium to high cost to install, landscape and maintain

Where to Apply:

• In the entry to a residential area where street is wide enough and speeding and/or cut-through traffic is a concern

Raised Crosswalk

Description:

• Flat-topped speed hump built as a pedestrian crossing. They are usually lower than speed humps

Advantages:

- Slows traffic
- Increases pedestrian visibility in the crosswalk
- Clearly designates the crosswalks

Disadvantages:

- Increases emergency response times
- May damage emergency response vehicles if not carefully designed
- May increase traffic noise in vicinity of crosswalk
- May create drainage issues where raised crossing extends from curb to curb

Special Considerations:

- Appropriate near schools, recreation facilities, other areas with high pedestrian activity
- Should not be used on critical emergency response routes
- Needs to be used in conjunction with other traffic calming devices to control speeds

Cost:

Moderate

Where to Apply:

- Local streets where speed control and pedestrian crossing designation are desired
- Local streets where cut-through traffic is to be discouraged

Mid-Block Narrowing

Description:

 Segments of roadway narrowing where curbs are extended toward the center of the roadway

Advantages:

- Pedestrian visibility increased and crossing distance reduced
- May contribute to vehicular speed reduction

Disadvantages:

- Creates drainage issues where curb and gutter exist
- May create a hazard for bicyclists

Cost:

 Medium to high cost depending on landscaping, pavement treatments and storm drainage considerations

Where to Apply:

• Mid-block locations on local residential or collector streets where speeding and/or cut-through traffic is a concern

Chokers at Intersections

Description:

Raised islands built to narrow the roadway at intersections.

Advantages:

- Pedestrian crossing distance reduced
- Narrowed roadway section may contribute

to vehicular speed reduction

Creates neighborhood "gateway"

Disadvantages:

 May create hazard for bicyclists who are less visible to cross street and turning traffic

Cost:

Moderate to high

Where to Apply:

• Typically used adjacent to intersections on local residential or collector streets where speeding and/or cut-through traffic is a concern

Lane Reduction/Lane Narrowing

Description:

 Modify roadway striping to either narrow lanes or reduce the number of lanes

Advantages:

 May reduce speeds due to perceived narrower roadway space by motorist

Disadvantages:

- Speed reduction less effective than other more restrictive measures
- May require some parking removal
- May result in shifting volumes to adjacent streets

Cost:

Low to Moderate

Where to Apply:

• Wide residential streets where speed control is desired

Stop Sign as Neighborhood Traffic Control Measure

Description:

- Stop signs are a traffic control device used to assign the right-of-way at intersections.
 Although not intended for this purpose, stop signs have been used in many communities as a measure to discourage cut-through traffic
- One of the most requested "tools" by residents, elected officials

Advantages:

- Placement of additional stop signs may discourage some cut-through traffic
- Easy to implement low cost measure which may be perceived by affected residents as a positive step toward solving the problem

Disadvantages:

- Not approved by most professional traffic engineers for neighborhood traffic management purposes
- Proliferation of stop signs may result in motorists dis-obeying the signs
- Could result in **increase** in speeds between the signs as drivers try to "make up for lost time"
- May increase vehicle noise at new stop sign location
- May increase traffic congestion as vehicles stop at multiple signs

Cost:

Low

Where to Apply:

- Stop signs intended for intersections where right-of-way is confusing
- Has been applied as a neighborhood control measure where speeding and/or cut through traffic is an issue
- Must be carefully reviewed by City Traffic Engineer for safety and other issues

Turn Restrictions/Physical Barrier

Description:

 Regulatory signing which prohibits certain movements – may be all day or time restricted

Advantages:

- Effective volume reduction where used properly
- May reduce "speeders" who cut through

Disadvantages:

- Requires enforcement
- Increases movements at other locations

Cost:

Low to Moderate

Where to Apply:

Periphery of residential neighborhoods

Level Three

Speed Hump

Description:

Speed humps are areas of pavement raised approximately 3 inches in varying widths. They are designed to result in a
gradual speed reduction to near 25 mph. They should be marked with signs and pavement markings.

Advantages:

- Effectively slows traffic to near 25 mph speed limit
- Self enforcing
- May reduce volume by discouraging non-resident traffic

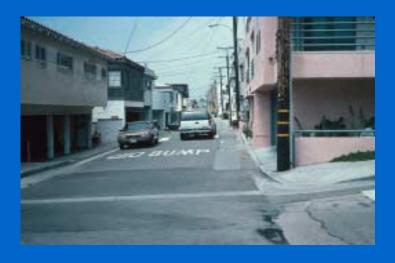
Disadvantages:

- Increases emergency response times. May damage emergency response vehicles if not carefully designed
- Increases traffic noise in vicinity of hump
- Aesthetics some residents may perceive them to be unattractive
- May result in shifting volumes to a parallel residential street
- Can create hazards for bicyclists, motorcycles and pedestrians

Special Considerations:

- Should not be used on critical emergency response routes
- Needs to be used in series or in conjunction with other traffic calming devices to control speeds

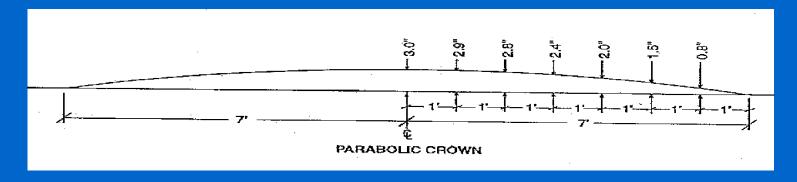
Cost:

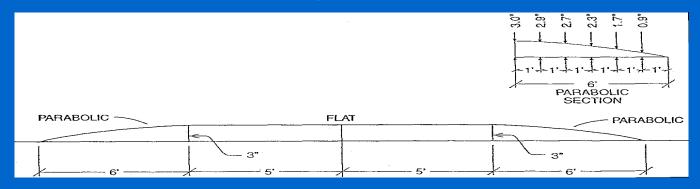

· Moderate to high, depending on number to be installed

Where to Apply:

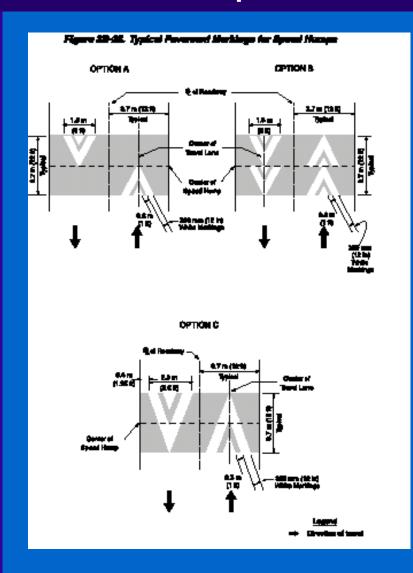
- Local residential streets with 25 mph speed limit with no more than one lane in each direction
- Local residential streets with daily traffic not less than 500 vehicles and not exceeding approximately 3,00 to 5,000 vehicles per day
- Must have demonstrated speeding problem(85th percentile speed exceeding 32 mph)
- Not on critical emergency response routes or transit routes
- Not on streets with grades which exceed 5%

Speed Humps




Sample Speed Hump Profiles

14' Speed Hump


Source: Bureau of Traffic Management, "Traffic Manual" Portland, OR, December 1994, Chapter 11

22' Speed Table

Source: Bureau of Traffic Management, "Traffic Manual" Portland, OR, December 1994, Chapter 11

Speed Hump Markings

ITE Speed Hump Guidelines

- Streets classified as "local"
- No more than 2 travel lanes or 40 foot pavement width
- Horizontal curve of 300 foot radius or more
- Vertical curve with adequate stopping sight distance
- Grade of 8 percent or less
- Posted speed limit of 30 mph or less
- No more than 5 percent long wheel-base vehicles
- Not on primary emergency response route or bus route
- Majority of residents support

Traffic Circle

Description:

 Traffic circles are raised circular medians in an intersection. Vehicles must change their travel path to maneuver around the circle and are typically controlled by "Yield on Entry" on all approaches

Advantages:

- Slows traffic as it drives around circle
- Breaks up sight-lines on straight streets
- Opportunity for landscaping in the intersection

Disadvantages:

- May impede emergency response
- May impede left turns by large vehicles
- On streets with bicycle facilities, bikes must merge with traffic around circle
- May shift traffic to parallel residential streets
- May require some parking removal

Special Considerations:

- Need to be used in series or in conjunction with other traffic calming devices
- Should not be used on critical emergency response routes
- May require extensive signing
- May require educational campaign and learning period

Cost:

Moderate to High

Where to Apply:

Streets where speed control is desired

Restricted Movement Barrier

Description:

• Barrier island that prevents certain movements at an intersection

Advantages:

- Redirects traffic to main streets
- Self enforcing, unlike signage only
- Reduces cut-through traffic
- Increases opportunity for landscaping in the roadway

Disadvantages:

- May negatively affect emergency response
- May increase trip length for some drivers
- May redirect traffic to parallel residential streets

Special Considerations:

- Should not be used on critical emergency response routes
- Has little or no affect on speeds for through vehicles

Cost:

Moderate

Where to Apply:

Streets where reducing cut-through traffic is desired

Entrance Barrier – Half Closure

Description:

 Physical barrier that restricts turns into a street. Creates a one-way segment at the intersection while maintaining two-way traffic for the rest of the block

Advantages:

 Effectively restricts movements into a street while maintaining full access and movement within the street for residents

Disadvantages:

- May redirect traffic to other local streets
- May increase trip length for some drivers
- In effect at all times; even if cut-through problem exists only at certain times of day

Special Considerations:

- Should not be used on critical emergency routes
- Has little or no effect on speeds for local traffic
- Need to consider how residents will gain access to street

Cost:

Moderate to high

Where to Apply:

Local streets where cut-through traffic is a concern

Diagonal Diverter

Description:

 Raised areas placed diagonally across a four-way intersection that restrict through movements in all directions.

Advantages:

- Reduces cut-through traffic
- Self enforcing, unlike signage only

Disadvantages:

- May redirect traffic to other local streets
- May increase trip length for some drivers
- In effect at all times-even if cut-through problem exists only at certain times of day

Variations:

Traversable diverters that allow access for emergency response vehicles

Special Considerations:

- Should not be used on critical emergency response routes
- Need to consider how residents will gain access to street
- Has little or no effect on speeds for local traffic

Cost:

Moderate to high

Where to Apply:

Local streets where cut-through traffic is a problem

Street Closure

Description:

Full closure of a street

Advantages:

- Restricts all through traffic
- Self enforcing

Disadvantages:

- Will likely redirect traffic to other local streets
- Increases trip length for some drivers
- Increases emergency response times
- Legal issues regarding closing public roadway must be considered

Special Considerations:

- Should not be used on critical emergency response routes
- Consider impacts to adjacent streets
- Consider emergency response requirements

Cost:

Moderate to high

Where to Apply:

Local streets where cut-through traffic is the major concern

Other Tools

- Diagonal Parking
- No Through Access
- Chicanes
- Special Signs

Other Tools

- Traffic Safety Campaigns
 - Newsletters
 - Brochures
 - Community Meetings
 - Web sites
- School Area Education

Advantages and Disadvantages

Summary of Potential Advantages

- Reduction in speeds
- Reduction in cut-through traffic
- Increase motorist awareness
- Create neighborhood identity
- Assist pedestrians
- Redirect traffic to main streets
- Can address time-of-day problems
- Opportunity for more landscaping/beautification

Volume Impacts of Traffic Calming Measures

Measure	Sample Size	Ave. Change in Volume	Ave. % Change
Full Closures	19	-671	-44
Half Closures	53	-1611	-42
Diagonal Diverters	27	-501	-35
Other Volume Controls	10	-1167	-31

Source: ITE, Traffic Calming, State of the Practice

Speed Benefits of Traffic Calming Measures								
Measure	Sample Size	85 th Percentile	Ave. Change in 85 th	Ave. %				
		Speed Afterward	Percentile Speed	Change				
12' Humps	179	27.4 mph	-7.6 mph	-22%				
22' Tables	58	30.1 mph	-6.6	-18				
Longer Tables	10	31.6 mph	-3.2	-9				
Raised Intersections	3	34.3 mph	-0.3	-1				
Circles	45	30.2 mph	-3.9	-11				
Narrowings	7	32.3 mph	-2.6	-4				
Half Closures	16	26.3 mph	-6.0	-19				
Diagonal	7	27.9 mph	-1	0				

Source: ITE, Traffic Calming, State of the Practice

Diverters

Safety Benefits of Traffic Calming

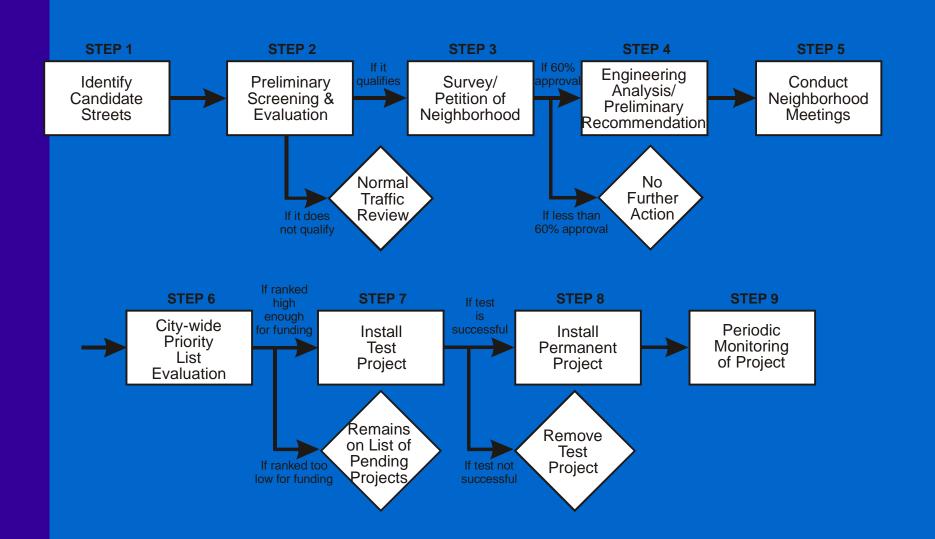
- Limited Before/After Studies Available
- Collisions Have Decreased
- Are collision locations shifted?
- Obstacles may be struck

- > Streets are Perceived as Safer:
 - Is this always good?

Summary of Potential Disadvantages

- Affects emergency response
- Redirection of traffic to other residential streets
- Impacts persons who live on the 'calmed' street
- Increase in trip lengths
- Cost may be expensive to build and maintain
- Can affect bicycle travel
- Noise issues
- Drainage issues
- May lose parking
- Compliance issues
- Aesthetics

Emergency Response Issues


- Fire Departments very concerned:
 - Slows Response Times
 - Equipment Damage
 - Trauma to Patients

Strategies that have been used to Address Fire-Rescue's Concerns

- Avoidance of Emergency Response Routes
- Avoidance of Emergency Response Facilities
- Gradual Escalation of Traffic Calming Measures
- Communication
- Use of Measures that Accommodate Fire-Rescue Vehicles
- Redesign of Traffic Calming Measures
- Traffic Calming Innovations
- Appeal for Citizen Support

Processes and Programs

Sample Neighborhood Traffic Control Program

Sample Tool Box Guidelines

			CRITERIA				
TRAFFIC CONTROL MEASURE	PROBLEMS TARGETED	STREET TYPE	VOLUME (1)	SPEED	DIVERSION TO ADJACENT STREETS	GRADE	OTHER CONSIDERATIONS
Speed Humps	High Speeds, Cut-through Traffic	Local/ Collector	from 1,500 to 5,000 ADT on local streets, from 3,000 to 5,000 on collector streets (2)	85th % speed is greater than 30 MPH (2)	Acceptable Diversion Based on Diversion Curve	less than 10%	Street must have only one lane for moving traffic in each direction
Diverters	High Cut- through Traffic	Local	greater then 2,500 ADT	N/A	Acceptable Diversion Based on Diversion Curve	N/A	If full diverter, cannot be truck or transit route, emergency access to be considered
Traffic Circles	High Speeds, Accident Historv. Geometric Design Problems	Local/ Collector	from 1,000 to 5,000 ADT	N/A	Acceptable Diversion Based on Diversion Curve	less than 10%	Intersecting roadways must be of sufficient width. Loss of parking must be assessed. Cost of landscaping must be considered
Chokers	High Speeds, Cut-through Traffic	Local	from 1,000 to 5,000 ADT	N/A	N/A	less than 10%	Loss of parking must be assessed. Cost of landscaping must be considered
Cul-de-sac	High Cut- through Traffic	Local	ADT greater than 2,000 with 20% non-local	N/A	Acceptable Diversion Based on Diversion Curve	N/A	Cannot be truck or transit route, emergency access to be considered

Notes: 1) all volumes criteria based on average daily traffic. Refer to calendar of acceptable count days prior to taking counts

2) criteria is also met if 80% of both ADT and speed thresholds are met

General Notes:

- final determination of control application based on review by City Public Works Director
- subject to modification by City Council on a case-by-case basis
- N/A criteria does not apply to specific control measure

Other Types of Programs

- Public Awareness Campaign: Sacramento's Neighborhood Traffic Management Program
- Santa Monica's Residential Traffic Management Handbook

Questions/Comments?